48,344 research outputs found

    Üner Tan Syndrome: Review and Emergence of Human Quadrupedalism in Self-Organization,\ud Attractors and Evolutionary Perspectives\ud

    Get PDF
    The first man reported in the world literature exhibiting habitual quadrupedal locomotion was discovered by a British traveler and writer on the famous Baghdat road near Havsa/Samsun on the middle Black-Sea coast of Turkey (Childs, 1917). Interestingly, no single case with human quadrupedalism was reported in the scientific literature after Child's first description in 1917 until the first report on the Uner Tan syndrome (UTS: quadrupedalism, mental retardation, and impaired speech or no speech)in 2005 (Tan, 2005, 2006). Between 2005 and 2010, 10 families exhibiting the syndrome were discovered in Turkey with 33 cases: 14 women (42.4%) and 19 men (57.6%). Including a few cases from other countries, there were 25 men (64.1%)and 14 women (35.9%). The number of men significantly exceeded the number of women (p < .05). Genetics alone did not seem to be informative for the origins of many syndromes, including the Uner Tan syndrome. From the viewpoint of dynamical systems theory, there may not be a single factor including the neural and/or genetic codes that predetermines the emergence of the human quadrupedalism.Rather, it may involve a self-organization process, consisting of many decentralized and local interactions among neuronal, genetic, and environmental subsystems. The most remarkable characteristic of the UTS, the diagonal-sequence quadrupedalism is well developed in primates. The evolutionarily advantage of this gait is not known. However, there seems to be an evolutionarily advantage of this type of locomotion for primate evolution, with regard to the emergence of complex neural circuits with related highly complex structures. Namely, only primates with diagonal-sequence quadrupedal locomotion followed an evolution favoring larger brains, highly developed cognitive abilities with hand skills, and language, with erect posture and bipedal locomotion, creating the unity of human being. It was suggested that UTS may be considered a further example for Darwinian diseases, which may be associated with an evolutionary understanding of the disorders using evolutionary principles, such as the natural selection. On the other hand, the human quadrupedalism was proposed to be a phenotypic example of evolution of reverse, i.e., the reacquisition by derived populations of the same character states as those of ancestor populations. It was also suggested that the emergence of the human quadrupedalism may be related to self-organizing processes occurring in complex systems, which select or attract one preferred behavioral state or locomotor trait out of many possible attractor states. Concerning the locomotor patterns, the dynamical systems in brain and body of the developing child may prefer some kind of locomotion, according to interactions of the internal components and the environmental conditions, without a direct role of any causative factor(s), such as genetic or neural codes, consistent with the concept of self-organization, suggesting no single element may have a causal priority

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u

    The parton-hadron phase transition in central nuclear collisions at the CERN SPS

    Get PDF
    A selection of recent data referring to Pb+Pb collisions at the SPS CERN energy of 158 GeV per nucleon is presented which might describe the state of highly excited strongly interacting matter both above and below the deconfinement to hadronization (phase) transition predicted by lattice QCD. A tentative picture emerges in which a partonic state is indeed formed in central Pb+Pb collisions which hadronizes at about T = 185 MeV, and expands its volume more than tenfold, cooling to about 120 MeV before hadronic collisions cease. We suggest further that all SPS collisions, from central S+S onward, reach that partonic phase, the maximum energy density increasing with more massive collision systems

    Bulk hadron production at AGS and SPS

    Get PDF
    With new data available from the SPS, at 40 and 80 GeV/A, I review the systematics of bulk hadron multiplicities, with prime focus on strangeness production. The classical concept of strangeness enhancement in central AA collisions is reviewed, in view of the statistical hadronization model which suggests to understand strangeness enhancement to arise chiefly in the transition from the canonical to the grand canonical version of that model. I. e. enhancement results from the fading away of canonical suppression. The model also captures the striking strangeness maximum observed in the vicinity of sqrt s approx 8 GeV. A puzzle remains in the understanding of apparent grand canonical order at the lower SPS, and at AGS energies

    Quark Matter 99 summary: hadronic signals

    Get PDF
    I review the new data presented at QM99. The main emphasis is placed on the CERN SPS hadron production systematics concluding that the boundary between a partonic and a hadronic phase has now been located at T=180±10 MeVT=180 \pm10\:MeV and ϵ≈1 GeV\epsilon \approx 1 \:GeV per fm3fm^3

    Relativistic nucleus-nucleus collisions : a connection between the strangeness maximum at square root s approximately equal to 7 GeV and the QCD critical endpoint from lattice studies

    Get PDF
    A steep maximum occurs in the Wroblewski ratio between strange and non-strange quarks created in central nucleus-nucleus collisions, of about A=200, at the lower SPS energy square root s approximately equal to 7 GeV. By analyzing hadronic multiplicities within the grand canonical statistical hadronization model this maximum is shown to occur at a baryochemical potential of about 450 MeV. In comparison, recent QCD lattice calculations at finite baryochemical potential suggest a steep maximum of the light quark susceptibility, to occur at similar mu B, indicative of "critical fluctuation" expected to occur at or near the QCD critical endpoint. This endpoint hat not been firmly pinned down but should occur in the 300 MeV < mu c B < 700 MeV interval. It is argued that central collisions within the low SPS energy range should exhibit a turning point between compression/heating, and expansion/cooling at energy density, temperature and mu B close to the suspected critical point. Whereas from top SPS to RHIC energy the primordial dynamics create a turning point far above in epsilon and T, and far below in mu B. And at lower AGS energies the dynamical trajectory stays below the phase boundary. Thus, the observed sharp strangeness maximum might coincide with the critical square root s at which the dynamics settles at, or near the QCD endpoint

    Hadron production in relativistic nuclear collisions

    Get PDF
    Relativistic nucleus-nucleus collisions create a "fireball" of strongly interacting matter at high energy density. At very high energy this is suggested to be partonic matter, but at lower energy it should consist of yet unknown hadronic, perhaps coherent degrees of freedom. The freeze-out of this high density state to a hadron gas can tell us about properties of fireball matter. Date (v1): Thu, 19 Dec 2002 12:52:34 GMT (146kb) Date (revised v2): Thu, 16 Jan 2003 15:11:47 GMT (146kb) Date (revised v3): Wed, 14 May 2003 12:49:35 GMT (146kb

    UNERTAN SYNDROME: A CASE SERIES DEMONSTRTAING HUMAN DEVOLUTION

    Get PDF
    A large family with six individuals exhibiting the Unertan syndrome (UTS) was identified residing in southern Turkey. All of the individuals had mental impairments and walked on all four extremities. The intra-familial marriages suggested that the UTS is an autosomal recessive disorder. The inferior portions of the cerebellum and vermis were absent as evidenced by MRI and CT scans. The height and head circumference of those affected were within normal ranges. Barany’s test suggested normal vestibular system function. The subjects could not name objects or their close relatives. The males (n = 4) could understand simple questions, answering them with only one or two sounds. The females (n = 2) were superior to the males with respect to language skills and walking, suggesting an association between walking and speaking abilities. One male exhibited three walking patterns at the same time: quadripedal, tiptoe, and scissor walking. Another male used two walking styles: quadripedal and toe-walking. It is emphasized that there are important differences between the UTS and the disequilibrium syndrome (DES). It is suggested that the inability to walk upright in those affected with the UTS may be best explained by a disturbance in lateral-balance mechanisms. An interruption of locomotor development during the transition from quadripedality to bipedality may result in habitual walking on all four extremities and is normal in some children. Since quadripedal gait is an ancestral trait, individuals with the UTS, exhibiting a manifestation of reverse evolution in humans, may be considered an experiment of nature, useful in understanding the mechanisms underlying the transition from quadripedality to bipedality during human evolution. The proposed mutant gene or gene pool playing a role in human quadrupedality may also be responsible for human bipedality at the same time. Herein there is no intent to insult or injure, rather this report is an endeavor to better understand human beings

    Hadronization revisited : the dynamics behind hadro-chemical equilibrium

    Get PDF
    The multiplicity of hadronic species created in elementary, and in nucleus-nucleus collisions, are known to be well reproduced by the statistical hadronization model, in its canonical and grand-canonical versions.To understand the origin of the implied equilibrium we revisit the hadronization models developed for e+e- annihilation to hadrons which imply spatial color pre-confinement clusters forming at the end of the pQCD evolution, which decays into on-shell hadrons/resonances. The classical ensemble description arises as a consequence of decoherence and phase space dominance during cluster formation, and decay.For A+A collisions we assume that hadronization occurs from similar singlet clusters which will overlap spatially owing to the extreme density. This is imaged in the transition to the grand-canonical ensemble.This transition sets in with increasing A and collision centrality. It can be described by a percolation model

    The strangeness signal in hadron production at relativistic energy

    Get PDF
    Strangeness enhancement is discussed as a feature specific to relativistic nuclear collisions which create a fireball of strongly interacting matter at high energy density. At very high energy this is suggested to be partonic matter, but at lower energy it should consist of yet unknown hadronic degrees of freedom. The freeze-out of this high density state to a hadron gas can tell us about properties of fireball matter. The hadron gas at the instant of its formation captures conditions directly at the QCD phase boundary at top SPS and RHIC energy, chiefly the critical temperature and energy density
    • …
    corecore